Нейросети на страже безопасности

В Китае реализуют масштабную государственную программу безопасности на основе анализа изображений с миллионов камер видеонаблюдения. Похожие системы тестируют московские аэропорты и метрополитен, рассказывает РИА Новости. При разработке нейросетей программисты взяли за основу схему работы мозга.

Нейросеть-детектор принимает поток изображений с видеокамеры и определяет, есть ли там лица. Набор лиц она подает на вход нейросети-идентификатору, которая сравнивает их с базой данных лиц-эталонов и говорит, есть совпадение или нет.

Как и мозг, нейросеть оперирует признаками. Есть математическая модель, преобразующая изображение лица в список признаков. Перебирая варианты, можно менять структуру этой модели, чтобы улучшить результат. Задача нейросети сводится к преобразованию изображения в набор признаков. Делает она это с помощью фильтров в виде математических формул.

Чтобы нейросеть успешно распознавала лица, ее нужно обучить на большой базе изображений. Это долгий процесс с множеством итераций. В зависимости от размера базы и вычислительных ресурсов на это уходят недели и месяцы. Шаг за шагом система учится все точнее распознавать лица. Программисты только следят за тем, чтобы векторы признаков (результат работы нейросети) были максимально информативными, позволяли проводить сравнение.

Для обученной нейросети не представляют проблем возраст, пол, этническая принадлежность лица. Она способна за считаные секунды дать ответ на вопрос, кто из этих десяти миллионов находился в поле зрения полутора тысяч камер. Человек не сделает такого никоим образом.

Одна из актуальных задач — поиск лиц, находящихся в розыске, на основе анализа потока с камер городского видеонаблюдения, например в Москве. Нейронная сеть в режиме реального времени сравнивает людей, попавших в поле зрения камер, с находящимися в базе правоохранительных органов. При совпадении информация моментально передается ближайшему полицейскому, и тот дальше действует в соответствии с инструкцией. Это позволяет повысить уровень безопасности в городе.

В Москве сотни тысяч уличных видеокамер. Отсмотр записей с них при необходимости происходит в ручном режиме и занимает часы, а то и дни. Если же задачу поручить программе, то она решит ее за секунды и с высокой точностью. Например, на поиск по пятистам миллионов фото, опубликованным в соцсети «ВКонтакте», уходит полсекунды.

Точность системы зависит от размера базы изображений, с которой необходимо работать: база из тысячи изображений даст почти стопроцентную точность, миллионы фото снизят точность до 95%. Условия, в которых стоят видеокамеры, также играют роль. Засветка, ракурс снимка снижают точность, но система все же будет работать. Однако, хотя нейросети справляются с задачей распознавания лиц лучше, чем люди, до идеала еще далеко.

Пока системы распознавания лиц востребованы для масштабных задач: обеспечения безопасности жителей города, пассажиров транспортных систем, контроля доступа на крупные предприятия и спортивные объекты, поиска пропавших людей. Есть ряд задач для ретейла: борьба с воровством, системы лояльности.

Тем временем нейросети уже учатся распознавать эмоции. Благодаря этому они могут стать умными помощниками, встроенными в машины и гаджеты. Года через три все они станут такой же привычной частью нашей жизни, как фотокамеры в мобильных телефонах.

 

Что будем искать? Например,ChatGPT

Мы в социальных сетях