В архитектуре компьютеров назревает очередная революция. В ближайшие годы могут произойти переход от электронных модулей к спинтронным и унификация используемых типов памяти.
В спинтронных устройствах информация кодируется путём изменения собственного магнитного момента (спина) электронов. Это позволяет повысить плотность хранения данных и увеличить скорость их обработки, сохранив свойство энергонезависимости состояния памяти. Возможность сочетать в одном устройстве сильные стороны долговременной и оперативной памяти приведёт к появлению компьютеров со сплошным адресным пространством и не требующих времени на загрузку.
Самым перспективным спинтронным устройством на сегодня является магниторезистивная оперативная память (Magnetoresistive random-access memory – MRAM), в которой инжектирование электронов с упорядоченным спином реализуется с помощью квантовых магнитных туннельных переходов. Идеи создания такой памяти высказывались советскими физиками ещё пятьдесят лет назад, однако практические разработки стали возможны лишь после открытия в 1988 немецкими учёными эффекта под названием «гигантское магнитосопротивление». Одной из иллюстраций его успешного практического применения является запуск в 2008 году японского спутника SpriteSat, в котором MRAM заменила модули как SRAM, так и флэш. Дальнейшим усовершенствованием MRAM стала технология переноса спинового момента (spin transfer torque – STT), поэтому последние чипы этой памяти называют также STT-MRAM или SPRAM.
Ключевую роль в создании этой памяти и других спинтронных устройств играют сегнетомагнетики — материалы, одновременно обладающие магнитной и электрической упорядоченностью, а также свойствами, обусловленными их взаимодействием. Наиболее важными из них является возможность изменения намагниченности электрическим полем и управление сопротивлением с помощью магнитного поля.
Недавно были изучены свойства перспективного сегнетомагнетика – ортоферрита тербия – TbFeO3. Исследование проводилось на установке нейтронных исследований в Берлине. С помощью компьютерного моделирования, основанного на результатах этих экспериментов, стало возможным выяснить детальное влияние структуры материала на его физические свойства.

Помимо ортоферрита тербия сегнетоэлектрические свойства были предсказаны ранее для
феррита висмута (BiFeO3), титаната бария (BaTiO3) и других соединений. Однако только в последние годы появились методики, позволяющие провести детальный анализ и сравнение свойств таких материалов.